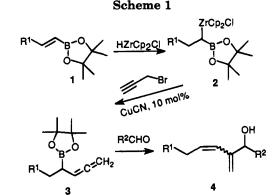
Use of gem-Borazirconocene Alkanes in the Regioselective Synthesis of a-Allenic **Boronic Esters and Conversion of the** Latter to Dienes and Trienes

Bin Zheng and Morris Srebnik*


Department of Chemistry, The University of Toledo, Toledo, Ohio 43606

Received November 21, 1994

1,1-Mixed bimetallics that undergo sequential and selective reactions at each of the carbon-metal bonds have attracted much attention lately in that they potentially offer a high degree of control in carbon-carbon bond-forming reactions.¹ Thus Knochel has prepared a series of zinc-boron and copper-boron 1,1-bimetallics that take advantage of the different reactivities to synthesize various polyfunctionalized ketones.² Lipshutz is developing reagents based on tin and zirconium.³ Other mixed 1,1-bimetallics based on zirconocene have been reported.⁴ They react like Tebbe's reagent, but with greater selectivity in some instances. Pelter has been exploring the chemistry of 1-lithio boranes.⁵

Our approach to the synthesis of mixed 1,1-bimetallics is based on boron and zirconium. Prior to our studies, the chemistry of these compounds have not been previously explored.⁶ The different reactivities of the carbonboron and carbon-zirconium bonds toward electrophiles are perhaps a consequence of the different bond polarities and different electronegativities of boron and zirconium. Also, zirconium is a transition metal while boron has intriguing transition metallike chemistry.⁷ It is thus reasonable to presume that a union of boron-zirconium organic chemistry should be synergistic, affording products and chemistry not attainable by each reagent itself. In this communication we provide the first evidence of the utility of borazirconocene 1,1-alkanes in carboncarbon bond-forming reactions. The synthetic route is outlined in Scheme 1.

The alkenylboronic esters 1 were synthesized according to the literature.⁸ Hydrozirconation of alkenylboronic eaters 1 with zirconocene hydrochloride, Cp₂Zr(H)Cl, prepared by Buchwald's procedure,⁹ took place smoothly in CH₂Cl₂, providing in each case the corresponding

borazirconocene 1,1-alkanes 2.6 Addition of propargyl bromide and a catalytic amount of copper(I) cyanide was accompanied by the disappearance of the yellow color associated with these compounds and by carbon-carbon bond formation with exclusive cleavage of the C -Zr bond. α -Allenic boronic esters 3 were isolated in good yields.¹⁰ The assignment of the allenic structure is in complete agreement with ¹H-NMR and ¹³C-NMR chemical shifts reported in the literature.¹¹ The reaction works well for both hindered and nonhindered borazirconocene 1.1-alkanes.

 α -Allenic boronic esters **3** are also allylboranes. Addition of an aldehyde to the boryl allenes afforded the corresponding 1,3-dienyl allylic alcohols 4.12 The results are summarized in Table 1. Allylboration with 3 works exceedingly well for aromatic aldehydes, except for the reaction with m-hydroxybenzaldehyde (entry 8). The low yield in the latter case may be due to the known sensitivity of allylboranes to protic sources.¹³ The reaction is both slower for aliphatic aldehydes, and the yields are somewhat lower too. The predominant isomer of the newly formed double bond in all cases is the Z-isomer.

Addition of an α,β -unsaturated aldehyde to 3 lead to trienes 5 or 6 depending on the reaction conditions (Scheme 2). Results are summarized in Table 2.

The geometry of the newly formed double bond (C5-C6) in both 5 and 6 was predominantly Z. Two types of trienes were obtained, depending on the reaction conditions. Method A involves the reaction of isolated α -allenic

0022-3263/95/1960-0486\$09.00/0

⁽¹⁾ Marek, I.; Lefrancois, J.-M.; Normant, J.-F. J. Org. Chem. 1994, 59, 4154

^{(2) (}a) Knochel, P. J. Am. Chem. Soc. 1990, 112, 7431. (b) Waas, J. R.; Sidduri, A. R.; Knochel, P. Tetrahedron Lett. 1992, 33, 3717.

⁽³⁾ Lipshutz, B. H.; Keil, R. Inorg. Chim. Acta 1994, 220, 41. (b) Lipshutz, B. H.; Keil, R.; Barton, J. C. Tetrahedron Lett. 1992, 33, 5861.

^{(4) (}a) Yoshida, T.; Negishi, E. J. Am. Chem. Soc. 1981, 103, 1276.
(b) Hartner, F. W.; Schwartz, J. Clift, S. M. J. Am. Chem. Soc. 1983, 105, 640. (c) Tucker, C. E.; Knochel, P. J. Am. Chem. Soc. 1991, 113, 9888. (d) Tucker, C. E.; Greve, B.; Klein, W.; Knochel, P. Organometallics **1994**, *13*, 94. (5) Pelter, A. Pure Appl. Chem. **1994**, 66, 223.

^{(6) (}a) Zheng, B.; Srebnik, M. Tetrahedron Lett. **1993**, 34, 4133. (b) Zheng, B.; Srebnik, M. In Current Topics in the Chemistry of Boron; Kabalka, G., Ed.; Royal Society of Chemistry: London, 1994; p 64. (c) Rabaika, G., Ed.; Royal Society of Chemistry: London, 1994; p 64. (c)
Zheng, B.; Srebnik, M. J. Organomet. Chem. 1994, 474, 49. (d)
Skrzypczak-Jankun, E.; Cheesman, B.; Zheng, B.; Lemert, R. M.; Asthana S.; Srebnik, M. J. Chem. Soc. Chem. Commun. 1994, 127. (e)
Zheng, B.; Srebnik, M. Tetrahedron Lett. 1994, 35, 6145. (f) Zheng,
B.; Srebnik, M. Tetrahedron Lett. 1994, 35, 6247. (g) Deloux, L;
Skrzypczak-Jankun, E.; Cheesman, B. V.; Sabat, M; Srebnik, M. J.
Am Chem. Soc. 1994, 16, 10302. Am. Chem. Soc. 1994, 116, 10302.

⁽⁷⁾ Fehlner, T. P. in Advances in Inorganic Chemistry; Academic Press: New York, 1990; Vol. 35, p 199. (8) Brown, H. C.; Campbell, J. B., Jr. J. Org. Chem. **1980**, 45, 389.

⁽⁹⁾ Buchwald, S. L.; LaMaire, S. J.; Nielson, R. B.; Watson, B. T.; King, S. M. Tetrahedron Lett. 1987, 28, 3895.

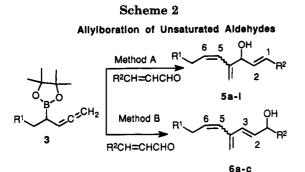
⁽¹⁰⁾ However, 1-allenylboranes, R₂BCR=C=CR₂, are well known.
(a) Zweifel, G.; Backlund, S. J.; Leung, T. J. Am. Chem. Soc. 1978, 100, 5561. (b) Brown, H. C.; Khire, U. R.; Racherla, U. S. Tetrahedron Lett. 1993, 34, 15. (c) Favre, E.; Gaudemar, M. J. Organomet. Chem. 1974, 76, 297.

^{(11) (}a) Schuster, H. F.; Coppola, G. M. Allenes in Organic Synthesis; Wiley: New York, 1984; p 3. (b) Runge, W. In The Chemistry of Allenes; Landor, S. R., Ed.; Academic Press: London, 1982; Vol. 3, p 832.

⁽¹²⁾ A one-pot procedure for preparation of 4a is as follows: A suspension of $Cp_2Zr(H)Cl$ (193 mg, 0.75 mmol) in dry CH_2Cl_2 (1.5 mL) was stirred at ambient temperature under an atmosphere of argon. A solution of 1a (1.2 mL, 0.5 M) in CH₂Cl₂ was added. After being stirred for 20 min, a solution of propargyl bromide (78 mg, 0.66 mmol, in 80% toluene) was injected and followed by a solution of CuCN (6 mg, 10 where M_{12} and M_{12} an the formation of pale precipitate. Distilled benzaldehyde (65 mg, 0.6 mmol) was then added in situ. The next day a solution of saturated aqueous NaCl (2 mL) was added in the reaction mixture in one portion, and the reaction mixture was extracted with ethyl acetate (3 \times 8 mL). Drying of the organic layer over Na₂SO₄, filtration through a silica pad, and removal of solvent provided an oily residue which was subjected to column chromatography on silica gel (hexanes/ ether) to

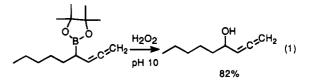
yield 118 mg (86%) of a 94:6 mix of cis:trans 4a. (13) Mikhailov, B. M.; Bubnov, Y. N. Organoboron Compounds in Organic Synthesis; Harwood Academic: Chur, Switzerland, 1983; p

Table 1. Preparation of α -Allenic Boronic Esters 3 and 1,3-Dienyl Allylic Alcohols 4


		α-allenyl boronic		1,3-dienyl allylic alcohols 4	
entry	\mathbb{R}^1 in Scheme 1	esters 3 , ^{<i>a</i>} Yield, $\%^{b}$	aldehydes	yield, % ^e	cis:trans
1	<i>n</i> -Butyl	3a , 89	benzaldehyde ^c	4a , 86	94:6
2	3-chloropropyl	3b , 85	benzaldehyde ^c	4b , 82	95:5
3	1-methylpropyl	3c , 77	benzaldehyde ^c	4c , 72^{g}	94:6
4	cyclopentyl	3d , 82	benzaldehyde ^c	4d, 77	95:5
5	<i>tert</i> -butyl	3e , 71	benzaldehyde ^c	4e , 65	95:5
6	3-phenylpropyl	3f , 90	benzaldehyde ^c	4f , 88	96:4
7	n-butyl	_	m-methylbenzaldehyde ^c	4g , 87	95:5
8	n-butyl	_	<i>m</i> -hydroxybenzaldehyde ^c	4h , 35	90:10
9	n-butyl	_	3-phenylpropionaldehyde ^d	4i , 75	95:5
10	n-butyl	-	propionaldehyde ^d	4j , 51	90:10

^a Coupling reactions were carried out in situ at rt overnight. ^b Isolated yields, based on alkenylboronic esters 1. ^c Reactions were carried out overnight. ^d Reactions were run for 48 h. ^e Isolated yields, based on alkenylboronic esters 1 in one-pot reactions. ^f Determined by ¹H NMR analysis of crude products. ^g As an undetermined mixture of diastereomers.

Table 2.	Preparation	of Trienyl	Alcohols	5 and 6


	R ¹ in Scheme 2			trienyl alcohols	
entry		aldehydes	$method^a$	yield, ^b %	cis:trans ^c
1	n-butyl	crotonaldehyde	A	5a , 82	90:10
2	3-chloropropyl	crotonaldehyde	Α	5b , 80	91:9
3	1-methylpropyl	crotonaldehyde	Α	5c , 75^{d}	89:11
4	cyclopentyl	crotonaldehyde	Α	5d, 79	88:12
5	tert-butyl	crotonaldehyde	Α	5e , 62	88:12
6	3-phenylpropyl	crotonaldehyde	Α	5f , 83	90:10
7	n-butyl	cinnamaldehyde	Α	5g, 77	91:9
8	n-butyl	trans-2-nonenal	Α	5h , 85	90:10
9	n-butyl	trans-3-(pentylthio)-2-propenal	Α	5 i, 64	90:10
10	n-butyl	crotonaldehyde	В	6a , 33	85:15
11	n-butyl	trans-2-nonenal	В	6b , 35	85:15
12	cyclopentyl	crotonaldehyde	В	6c , 34	82:18

 a For the conditions, see text. b Isolated yields of purifed trienyl alcohols, based on alkenylboronates. c Determined by ¹H NMR analysis of crude reaction mixtures. d As an undetermined mixture of diasteremers.

boronates 2 with aldehydes under salt-free conditions and provided trienes 5. In method B, the α -allenic boronates were not isolated but prepared in-situ and allowed to react with aldehydes to give the rearranged trienes 6. Results are summarized in Table 2. The yields in method A were much better than those of method B. The assignment of structure 5 is consistent with the postulated mechanism of the allylboration reaction.¹⁴ The geometry of the newly formed double bond in 5(C5-C6)was readily apparent from the ¹H NMR spectra. Since both the cis and trans diastereomers were detected in the reaction mixture, the vicinal coupling constants for each isomer could be determined after appropriate decoupling experiments. The 5-cis isomer was assigned on the basis of its smaller coupling constant.¹⁵ The C5-C6 double bond in 6 was assigned in an analogous manner. The trans geometry of the double bond of unsaturated aldehydes used in the allyboration was retained in the products **5** (C1–C2) and **6** (C2–C3). These type of trienes are possible precursors for the synthesis of lipoxygenase inhibitors.¹⁶

We postulate that compounds **6** are obtained by allylic rearrangement of **5** facilitated by the presence of the various salts acting as Lewis acids. When compounds **5** were treated with Lewis acids, i.e. ZnCl₂, complex reaction mixtures were observed, including **6**. α -Allenic boronic esters **3** can also be easily converted to α -allenic alcohols (useful intermediates in organic transformations,^{17a} and constituents of numerous natural products^{17b} and biologically active molecules^{17c}) by controlled alkaline oxidation (eq 1).

Acknowledgment. We thank the University of Toledo for support of this work. Special thanks to Dr. Craig Blankenship of Boulder Scientific for a generous gift of zirconocene dichloride.

Supplementary Material Available: General experimental procedures, and ¹H NMR and ¹³C NMR spectra for compounds in Tables 1 and 2 (66 pages).

JO9419551

^{(14) (}a) Hoffmann, R. W. Angew. Chem. Int. Ed. Engl. 1982, 21, 555.
(b) Matteson, D. S. Tetrahedron 1989, 45, 1859. (c) Gennari, C.; Fioravanzo, E.; Bernardi, A.; Vulpetti, A. Tetrahedron 1994, 50, 8815.

⁽¹⁵⁾ Friebolin, H. Basic One- and Two-Dimensional NMR Spectroscopy; 2nd enlarged ed.; VCH: New York, 1993; p 92.

⁽¹⁶⁾ Muehldorf, A. V. Tetrahedron Lett. 1994, 35, 6851, and references cited therein.

 $^{(17)\,(}a)$ Reference 11a, p $132.\,(b)$ Landor, S. R. in ref 11b, p $681.\,(c)$ Claesson, A. in ref 11b, p711.